A multi-preference integrated algorithm (MPIA) for the deep learning-based recommender framework (DLRF)

Author:

Maditham VikramORCID,Reddy N. Sudhakar,Kasa Madhavi

Abstract

PurposeThe deep learning-based recommender framework (DLRF) is based on an improved long short-term memory (LSTM) structure with additional controllers; thus, it considers contextual information for state transition. It also handles irregularities in the data to enhance performance in generating recommendations while modelling short-term preferences. An algorithm named a multi-preference integrated algorithm (MPIA) is proposed to have dynamic integration of both kinds of user preferences aforementioned. Extensive experiments are made using Amazon benchmark datasets, and the results are compared with many existing recommender systems (RSs).Design/methodology/approachRSs produce quality information filtering to the users based on their preferences. In the contemporary era, online RSs-based collaborative filtering (CF) techniques are widely used to model long-term preferences of users. With deep learning models, such as recurrent neural networks (RNNs), it became viable to model short-term preferences of users. In the existing RSs, there is a lack of dynamic integration of both long- and short-term preferences. In this paper, the authors proposed a DLRF for improving the state of the art in modelling short-term preferences and generating recommendations as well.FindingsThe results of the empirical study revealed that the MPIA outperforms existing algorithms in terms of performance measured using metrics such as area under the curve (AUC) and F1-score. The percentage of improvement in terms AUC is observed as 1.3, 2.8, 3 and 1.9% and in terms of F-1 score 0.98, 2.91, 2 and 2.01% on the datasets.Originality/valueThe algorithm uses attention-based approaches to integrate the preferences by incorporating contextual information.

Publisher

Emerald

Subject

General Computer Science

Reference54 articles.

1. An efficient deep learning approach for collaborative filtering recommender system;Procedia Computer Science,2020

2. DLRS: deep learning-based recommender system for smart healthcare ecosystem,2019

3. A review on deep learning for recommender systems: challenges and remedies;Artificial Intelligence Review,2018

4. Deep based recommender system for relevant K pick-up points,2020

5. Geometric deep learning: going beyond euclidean data;IEEE Signal Processing Magazine,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3