Development of a solution for adding a collaborative robot to an industrial AGV

Author:

D'Souza Floyd,Costa João,Pires J. Norberto

Abstract

Purpose The Industry 4.0 initiative – with its ultimate objective of revolutionizing the supply-chain – putted more emphasis on smart and autonomous systems, creating new opportunities to add flexibility and agility to automatic manufacturing systems. These systems are designed to free people from monotonous and repetitive tasks, enabling them to concentrate in knowledge-based jobs. One of these repetitive functions is the order-picking task which consists of collecting parts from storage (warehouse) and distributing them among the ordering stations. An order-picking system can also pick finished parts from working stations to take them to the warehouse. The purpose of this paper is to present a simplified model of a robotic order-picking system, i.e. a mobile manipulator composed by an automated guided vehicle (AGV), a collaborative robot (cobot) and a robotic hand. Design/methodology/approach Details about its implementation are also presented. The AGV is needed to safely navigate inside the factory infrastructure, namely, between the warehouse and the working stations located in the shop-floor or elsewhere. For that purpose, an ActiveONE AGV, from Active Space Automation, was selected. The collaborative robot manipulator is used to move parts from/into the mobile platform (feeding the working stations and removing parts for the warehouse). A cobot from Kassow Robots was selected (model KR 810), kindly supplied by partner companies Roboplan (Portugal) and Kassow Robotics (Denmark). An Arduino MKR1000 board was also used to interconnect the user interface, the AGV and the collaborative robot. The graphical user interface was developed in C# using the Microsoft Visual Studio 2019 IDE, taking advantage of this experience in this type of language and programming environment. Findings The resulting prototype was fully demonstrated in the partner company warehouse (Active Space Automation) and constitutes a possible order-picking solution, which is ready to be integrated into advanced solutions for the factories of the future. Originality/value A solution to fully automate the order-picking task at an industrial shop-floor was presented and fully demonstrated. The objective was to design a system that could be easy to use, to adapt to different applications and that could be a basic infrastructure for advanced order-picking systems. The system proved to work very well, executing all the features required for an order-picking system working in an Industry 4.0 scenario where humans and machines must act as co-workers. Although all the system design objectives were accomplished, there are still opportunities to improve and add features to the presented solution. In terms of improvements, a different robotic hand will be used in the final setup, depending on the type of objects that are being required to move. The amount of equipment that is located on-board of the AGV can be significantly reduced, freeing space and lowering the weight that the AGV carries. For example, the controlling computer can be substituted by a single-board-computer without any advantage. Also, the cobot should be equipped with a wrist camera to identify objects and landmark. This would allow the cobot to fully identify the position and orientation of the objects to pick and drop. The wrist camera should also use bin-picking software to fully identify the shape of the objects to pick and also their relative position (if they are randomly located in a box, for example). These features are easy to add to the developed mobile manipulator, as there are a few vision systems in the market (some that integrate with the selected cobot) that can be easily integrated in the solution. Finally, this paper reports a development effort that neglected, for practical reasons, all issues related with certification, safety, training, etc. A future follow-up paper, reporting a practical use-case implementation, will properly address those practical and operational issues.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference21 articles.

1. How virtualization;Decentralization and Network Building Change the Manufacturing Landscape,2014

2. Level V involvement in patients with early T-stage, node-positive oropharyngeal carcinoma

3. Colgate, J.E. and Peshkin, M.A. (1999), Patent No. 5952796. United States of America.

4. Field, B.F. and Kasper, J.G. (1989), Patent No. 4996468, doi: doi: 10.1057/9780230607156

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3