Ensemble of ensembles for fine particulate matter pollution prediction using big data analytics and IoT emission sensors

Author:

Egwim Christian Nnaemeka,Alaka Hafiz,Pan Youlu,Balogun Habeeb,Ajayi Saheed,Hye Abdul,Egunjobi Oluwapelumi Oluwaseun

Abstract

Purpose The study aims to develop a multilayer high-effective ensemble of ensembles predictive model (stacking ensemble) using several hyperparameter optimized ensemble machine learning (ML) methods (bagging and boosting ensembles) trained with high-volume data points retrieved from Internet of Things (IoT) emission sensors, time-corresponding meteorology and traffic data. Design/methodology/approach For a start, the study experimented big data hypothesis theory by developing sample ensemble predictive models on different data sample sizes and compared their results. Second, it developed a standalone model and several bagging and boosting ensemble models and compared their results. Finally, it used the best performing bagging and boosting predictive models as input estimators to develop a novel multilayer high-effective stacking ensemble predictive model. Findings Results proved data size to be one of the main determinants to ensemble ML predictive power. Second, it proved that, as compared to using a single algorithm, the cumulative result from ensemble ML algorithms is usually always better in terms of predicted accuracy. Finally, it proved stacking ensemble to be a better model for predicting PM2.5 concentration level than bagging and boosting ensemble models. Research limitations/implications A limitation of this study is the trade-off between performance of this novel model and the computational time required to train it. Whether this gap can be closed remains an open research question. As a result, future research should attempt to close this gap. Also, future studies can integrate this novel model to a personal air quality messaging system to inform public of pollution levels and improve public access to air quality forecast. Practical implications The outcome of this study will aid the public to proactively identify highly polluted areas thus potentially reducing pollution-associated/ triggered COVID-19 (and other lung diseases) deaths/ complications/ transmission by encouraging avoidance behavior and support informed decision to lock down by government bodies when integrated into an air pollution monitoring system Originality/value This study fills a gap in literature by providing a justification for selecting appropriate ensemble ML algorithms for PM2.5 concentration level predictive modeling. Second, it contributes to the big data hypothesis theory, which suggests that data size is one of the most important factors of ML predictive capability. Third, it supports the premise that when using ensemble ML algorithms, the cumulative output is usually always better in terms of predicted accuracy than using a single algorithm. Finally developing a novel multilayer high-performant hyperparameter optimized ensemble of ensembles predictive model that can accurately predict PM2.5 concentration levels with improved model interpretability and enhanced generalizability, as well as the provision of a novel databank of historic pollution data from IoT emission sensors that can be purchased for research, consultancy and policymaking.

Publisher

Emerald

Subject

General Engineering,Building and Construction

Reference42 articles.

1. The theory of planned behavior;Organizational Behavior and Human Decision Processes,1991

2. Boruta-grid-search least square support vector machine for NO2 pollution prediction using big data analytics and IoT emission sensors;Applied Computing and Informatics,2021

3. BIGOWL: knowledge centered big data analytics;Expert Systems with Applications,2019

4. Incorporating human behaviour into earth system modelling;Nature Human Behaviour,2022

5. Nexus of ecosystem service-human health-natural resources: the nature-based solutions for urban PM2.5 pollution;Sustainable Cities and Society,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3