Author:
Kaur Chinkle,Kaur Jasleen
Abstract
Purpose
Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and admiration globally due to their super resilience in diverse climates and significant nutritional benefits. As millets are renowned for their nutritional richness, the demand for millet-based products increases. Hence, this paper aims in identifying the growing need for innovative processing techniques that not only preserve their nutritional content but also extend their shelf life.
Design/methodology/approach
In traditional times, heat was the only means of cooking and processing of the foods, but the amount of damage they used to cause to the sensorial and nutritional properties was huge. Millets’ sensitivity toward heat poses a challenge, as their composition is susceptible to disruption during various heat treatments and manufacturing processes. To cater to this drawback while ensuring the prolonged shelf life and nutrient preservation, various innovative approaches such as cold plasma, infrared technology and high hydrostatic pressure (HPP) processing are being widely used. These new methodologies aim on inactivating the microorganisms that have been developed within the food, providing the unprocessed, raw and natural form of nutrients in food products.
Findings
Among these approaches, nonthermal technology has emerged as a key player that prioritizes brief treatment periods and avoids the use of high temperatures. Nonthermal techniques (cold plasma, infrared radiation, HPP processing, ultra-sonication and pulsed electric field) facilitate the conservation of millet’s nutritional integrity by minimizing the degradation of heat-sensitive nutrients like vitamins and antioxidants. Acknowledging the potential applications and processing efficiency of nonthermal techniques, the food industry has embarked on substantial investments in this technology. The present study provides an in-depth exploration of the array of nonthermal technologies used in the food industry and their effects on the physical and chemical composition of diverse millet varieties.
Originality/value
Nonthermal techniques, compared to conventional thermal methods, are environmentally sound processes that contribute to energy conservation. However, these conveniences are accompanied by challenges, and this review not only elucidates these challenges but also focuses on the future implications of nonthermal techniques.
Reference77 articles.
1. High pressure induced water uptake characteristics of Thai glutinous rice;Journal of Food Engineering,2006
2. Effects of pressure treatment of hydrated oat, finger millet and sorghum flours on the quality and nutritional properties of composite wheat breads;Journal of Cereal Science,2012
3. What are the prospects for ultrasound technology in food processing? An update on the main effects on different food matrices, drawbacks, and applications;Journal of Food Process Engineering,2021
4. Effect of enzyme pretreatment in the ultrasound assisted extraction of finger millet polyphenols;Journal of Food Science and Technology,2019
5. Structural and Film-Forming properties of millet starches: a comparative study;Coatings,2021