Author:
Vendittoli Valentina,Polini Wilma,Walter Michael S.J.,Stacheder Jakob P.C.
Abstract
Purpose
This study aims to address challenges in the Laser Powder Bed Fusion process of polymers, focusing on the considerable amount of unsintered powder left post-printing. The objective is to understand the altered properties of this powder and find solutions to improve the process, reduce waste and explore reusing reprocessed powder.
Design/methodology/approach
A novel methodology is used to generate reprocessed powder without traditional printing, reducing time, cost and waste. The approach mimics the ageing effects during the printing process, providing insights into particle size distribution and thermal behaviour.
Findings
Results reveal insights into artificial ageing, showing an 8.2% decrease in particle size (60.256–69.183 µm) and a 9.1% increase in particle size (17.378–19.953 µm) compared to unsintered powder. Thermal behaviour closely mirrors used powders, with variations in enthalpy of fusion (−0.55% to 2.69%) and degree of crystallinity (0.19% to 2.64%). The proposed methodology produces results that differ from those due to printing under 3% from a thermal point of view. The new process reduces the time needed for aged powder, contributing to cost savings and waste reduction.
Originality/value
The study introduces a novel method for reprocessed powder generation, deviating from traditional printing. The originality lies in artificially ageing powders, providing comparable results to actual printing. This approach offers efficiency, time savings and waste reduction in the Laser Powder Bed Fusion process, presenting a valuable avenue for further research.