Post-processing of FDM parts to improve surface and thermal properties

Author:

Nguyen Trieu Khoa,Lee Bong-Kee

Abstract

PurposeThe purpose of this paper is to develop a novel post-processing technique of fused deposition modeling (FDM) parts to improve surface roughness and reduce heat absorption and for high-temperature application in thermoforming process. Design/methodology/approachThe current technique consists of chemical treatment, drying and aluminum coating. First, surface morphology was investigated using FDM specimens with a flat surface. The heat absorption characteristic was also analyzed by Taguchi-based design of experiment and modified lump-capacity model. In addition, dimensional accuracy and uniformity were investigated under high-temperature conditions, which were similar to a typical thermoforming process, with specimens having concave and convex grooves. FindingsIt was verified that the proposed post-processing technique could efficiently improve surface quality of FDM parts with the arithmetic average surface roughness of 2.06 µm. In addition, the coated aluminum layer was found to reflect the heat radiation, resulting into a sufficient reduction of heat absorption. From the investigation of dimensional accuracy and uniformity, it was found that the current technique produced maximum change of 0.11 mm and uniform thickness of an aluminum layer within 0.07 mm. Originality/valueThe present study establishes a novel post-processing technique, enabling to treat the surface of FDM parts for high-temperature applications. It provides a simple way of using typical FDM parts for a thermoforming process as the mold cores. Furthermore, it can be used in other rapid tooling technologies, consequently widening the application areas of FDM.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference39 articles.

1. Development of rapid tooling using fused deposition modeling: a review;Rapid Prototyping Journal,2016

2. Surface improvement of fused deposition modeling parts by barrel finishing;Rapid Prototyping Journal,2015

3. Roughness prediction in coupled operations of fused deposition modeling and barrel finishing;Journal of Materials Processing Technology,2015

4. Finishing of fused deposition modeling parts by CNC machining;Robotics and Computer-Integrated Manufacturing,2016

5. 3D roughness profile model in fused deposition modelling;Rapid Prototyping Journal,2013

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3