Force-flow guided reinforcement design of homogeneous mesoscale structure in additive manufacturing

Author:

Yu Ying,Huang Huan,Wang Shuo,Li Shuaishuai,Wang Yu

Abstract

Purpose The mesoscale structure (MS) has a significant impact on the mechanical performance of parts made by additive manufacturing (AM). This paper aims to explore the design and fabrication of force-flow guided reinforcement mesoscale structure (FFRMS) compared with the homogeneous mesoscale structure (HMS), which is inconsistent with the stress field for a given load condition. Some cases were presented to demonstrate the mechanical properties of FFRMS in terms of MS combined with quasi-isotropy and anisotropy. Design/methodology/approach The paper consists of four main sections: the first developed the concept of FFRMS design based on HMS, the second explored volume fraction control for the proportion of force-flow lines in terms of mechanical property requirement, and the third presented a sequence stacking theory and practical manufacturing process framework and the final sections provided some application case studies. Findings The main contributions of this study were the definition and development of the FFRMS concept, the application framework and the original case studies. As an example, a typical lug designed with the proposed FFRMS method was fabricated by three different AM processes. The test results showed that both the strength and stiffness of the specimens are improved greatly by using the FFRMS design method. Originality/value The superposition of HMS as the basement and force-flow as an indication of the stiffener, leading to a heterogeneous structure, which exhibits more efficient and diversified means compared with the traditional way of increasing the HMS density merely.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3