Feasibility study of topology optimization of the control system frame for the missile with canard configuration

Author:

Abratanski Artur,Grzejda Rafał,Perz Rafał

Abstract

Purpose The purpose of this paper is to describe the new method for optimizing the topology of the control system frame for a canard missile to create its efficient model. Determining the minimum volume of the part risked losing some of the mechanical interfaces and functionality required of the frame. The proposed method must cope with these requirements and include a validation loop of the improved solution proposed by the software. The processing of the mathematical model to a printable form must take into account manufacturing technologies limitations and appropriate curvature continuities to avoid stress concentrations. Design/methodology/approach Real examples from the aerospace industry are presented and the process of determining a prototype is described. The optimization assumed leaving the largest volume of the domain. Strength analyses were performed on both the assembly fasteners and the robust prototype. Once all boundary conditions were validated, topological optimization was performed in the ANSYS environment. The algorithm of the optimization was presented. Findings Obtained fatigues showed the vast potential of topology optimization, efficient method of weight reduction in specific situations. It can be considered as an innovative approach to the manufacturing of products with a structure focused on the best possible correlation of weight and strength, for example of a canard rocket. Originality/value The paper introduces precise manufacturing technology of the inner frame for the missile’s control system, which ensures sufficient properties of the material, known as EBM.

Publisher

Emerald

Subject

Aerospace Engineering

Reference17 articles.

1. Safety of aircraft structures in the context of composite element connection;International Review of Aerospace Engineering (IREASE),2020

2. Filters in topology optimization;International Journal for Numerical Methods in Engineering,2001

3. Agricultural aircraft wing slat tolerance for bird strike;Aircraft Engineering and Aerospace Technology,2017

4. An aerothermodynamic design optimization framework for hypersonic vehicles;Aerospace Science and Technology,2019

5. Life-cycle reliability-based optimization of civil and aerospace structures;Computers & Structures,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3