Numerical simulation of ignition transient in solid rocket motor: a revisit

Author:

Godil Junaid,Kamran Ali

Abstract

Purpose The capability to predict and evaluate the motor pressure during each phase by means of a numerical analysis can significantly increase the efficiency of the preliminary design process with a reduction of both the motor development and operational costs. This paper aims to perform numerical simulation to analyze the ignition transient in solid rocket motor by solving Euler equation coupled with some semi-empirical correlations. These relations take into account the main phenomena affecting the ignition transient. Coupling relationships include the heat transfer of the gas to the propellant and erosive burning rate relationship. Design/methodology/approach The current research effort divides motor into series of control volumes along the port axis, and the variation of port area, burning surface and burning rate along the port are taken into account. A set of governing equations are then solved using explicit, time-dependent, predictor-corrector finite difference method. The numerical model helps to capture and embed shock wave associated with igniter flow within the solution. Second-order artificial viscosity dampens out the numerical oscillations due to sharp gradient within the flow field. The developed computer code predicts the start-up characteristics of motor. The study also provides comparison of simulation results with in-house experimental motor. Findings Simulations are performed with and without erosive burning to demonstrate that the flow model is a good physical approximation of motor. Numerical results calculated by this model without erosive burning are not in good agreement with experimental results. This minor discrepancy has motivated the inclusion of erosive burning in numerical model. The simulated results are then compared with the experimental data for head-end and rear-end pressure. The agreement between simulation and experiment is remarkable. In summary, major finding of this study is that unsteady quasi-one-dimensional gas dynamic model can capture the flow field in the motor during ignition transient effectively. Research limitations/implications Unsteady quasi-one-dimensional gas dynamic model can capture the flow field in the motor during ignition transient effectively. However, in systems where two- and three-dimensional effects are pre-dominant, one would require to develop a more elaborate, multi-dimensional model which will allow for further understanding of the flow behavior and eventually lead to modeling of rocket motors with more complex geometries. Practical implications The close agreement between experimental and simulation results can be considered as forced to some degree, because the general mathematical model of erosive burning contains a free variable erosive burning exponent. However, in future, this variable can be established a priori by erosive burning tests. Originality/value The solid propellant ignition process consists of series of rapid events and must be completed in a fraction of a second. An understanding of the dynamics of ignition has become increasingly vital with the development of larger and more sophisticated solid propellant rocket motors. This research effort provides the simulation framework to predict and evaluate the motor pressure during each phase by means of a numerical analysis, thus significantly increasing the efficiency of the preliminary design process with a reduction of both the motor development and operational costs.

Publisher

Emerald

Subject

Aerospace Engineering

Reference29 articles.

1. Analysis of ignition transient of VEGA launcher motors,2008

2. 2D axisymmetric analysis of SRM ignition transient,1993

3. Extensions to analysis of ignition transients of segmented rocket motors,1978

4. Ignition transients of large segmented solid rocket boosters,1976

5. Numerical analysis of ignition transient in solid rocket motors,1991

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3