A neural network model for UAV propulsion system

Author:

Işık Gültekin,Ekici Selçuk,Şahin Gökhan

Abstract

Purpose Determining the performance parameters of the propulsion systems of the aircraft, which is the key product of the aviation industry, plays a critical role in reducing adverse environmental impacts. Therefore, the purpose of this paper is to present a temperature performance template for turbojet engines at the design stage using a neural network model that defines the relationship between the performance parameters obtained from ground tests of a turbojet engine used in unmanned aerial vehicles (UAV). Design/methodology/approach The main parameters of the flow passing through the engine of the UAV propulsion system, where ground tests were performed, were obtained through the data acquisition system and injected into a neural network model created. Fifteen sensors were mounted on the engine – six temperature sensors, six pressure sensors, two flow meters and one load cell were connected to the data acquisition system to make sense of this physical environment. Subsequently, the artificial neural network (ANN) model as a complement to the approach was used. Thus, the predicted model relationship with the experimental data was created. Findings Fuel flow and thrust parameters were estimated using these components as inputs in the feed-forward neural network. In the network experiments to estimate fuel flow parameter, r-square and mean absolute error were calculated as 0.994 and 0.02, respectively. Similarly, for thrust parameter, these metrics were calculated as 0.994 and 1.42, respectively. In addition, the correlation between fuel flow, thrust parameters and each input parameters was examined. According to this, air compressor inlet (ACinlet,temp) and outlet (ACoutlet,temp) temperatures and combustion chamber (CCinlet,temp, CCoutlet,temp) temperature parameters were determined to affect the output the most. The proposed ANN model is applicable to any turbojet engines to model its behavior. Practical implications Today, deep neural networks are the driving force of artificial intelligence studies. In this study, the behavior of a UAV is modeled with neural networks. Neural networks are used here as a regressor. A neural network model has been developed that predicts fuel flow and thrust parameters using the real parameters of a UAV turbojet engine. As a result, satisfactory findings were obtained. In this regard, fuel flow and thrust values of any turbojet engine can be estimated using the neural network hyperparameters proposed in this study. Python codes of the study can be accessed from https://github.com/tekinonlayn/turbojet. Originality/value The originality of the study is that it reports the relationships between turbojet engine performance parameters obtained from ground tests using the neural network application with open source Python code. Thus, small-scale unmanned aerial propulsion system provides designers with a template showing the relationship between engine performance parameters.

Publisher

Emerald

Subject

Aerospace Engineering

Reference35 articles.

1. Tensorflow: a system for large-scale machine learning,2016

2. Modeling and simulation of a gas turbine engine for power generation;Journal of Engineering for Gas Turbines and Power of Power,2006

3. Regional aviation and economic growth: cointegration and causality analysis in Australia;Journal of Transport Geography,2015

4. Adaptive-critic-based neural networks for aircraft optimal control;Journal of Guidance, Control, and Dynamics,1996

5. Research status of artificial neural network and its application assumption in aviation,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of performance degradation in aircraft engines with fuel flow parameter;Neural Computing and Applications;2023-11-27

2. A new proposal for the prediction of an aircraft engine fuel consumption: a novel CNN-BiLSTM deep neural network model;Aircraft Engineering and Aerospace Technology;2023-03-07

3. Kuru Fasulye Tohumlarının Çok Sınıflı Sınıflandırılması İçin Hibrit Bir Yaklaşım;Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2023-03-01

4. Investigation of Novel Thrust Parameters to Variable Geometry Turbojet Engines;2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI);2021-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3