CFD investigation of shock boundary layer interaction in hypersonic flow and flow control using micro ramps

Author:

Gupta Gautam,Ashok Kumar Akshay,Sivakumar R.,Kandasamy Jayaraman

Abstract

Purpose This study aims to investigate the prevalence of shock boundary layer interaction (SBLI) in air-breathing intake system is highly undesirable since this leads to high pressure gradients, typical stream mutilation and pressure drop. A novel flow control mechanism is incorporated in this research holding an array configuration of passive flow control device (micro ramps [MR]) that is adapted to improve the boundary layer stability. Design/methodology/approach Two geometric variants of the MR, namely, MR40 and MR80 is considered which reduce the pressure drop during SBLI. The incidence oblique shock wave angle of 34° is considered for the modelling. Large eddy simulation (LES) turbulence model was used with subgrid models of Wall modelled LES, Smagorinsky–Lilly to compute the unsteady effects of SBLI control using micro vortex generators. The unsteady results are compared with steady Reynold’s average Naviers–Stoke’s equation for calibrating the turbulence models. Findings The array configuration of MR80 reduces the pressure drop by 22% as compared with no ramp configuration and also reduces the flow distortion in hypersonic inlet. The most affected region of the MR is in the vicinity of center-line. Quantitative results prove that the upstream influence of the shock waves has been largely reduces by MR80 array configuration as compared to single MR80 pattern configuration. Different vortex structures found in the experiments was exclusively predicted using LES. Originality/value This paper substantiates the requirement of MR array configuration for transferring the momentum from free stream to the boundary layer and thereby energizing the boundary layer. This process of energization delays the flow separation in hypersonic flow.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3