Experimental and numerical analysis of humpback whale inspired tubercles on swept wings

Author:

Joseph Jeena,A. Sathyabhama,Sridhar Surya

Abstract

Purpose With aims to increase the aerodynamic efficiency of aerodynamic surfaces, study on flow control over these surfaces has gained importance. With the addition of flow control devices such as synthetic jets and vortex generators, the flow characteristics can be modified over the surface and, at the same time, enhance the performance of the body. One such flow control device is the tubercle. Inspired by the humpback whale’s flippers, these leading-edge serrations have improved the aerodynamic efficiency and the lift characteristics of airfoils and wings. This paper aims to discusses in detail the flow physics associated with tubercles and their effect on swept wings. Design/methodology/approach This study involves a series of experimental and numerical analyses that have been performed on four different wing configurations, with four different sweep angles corresponding to 0°, 10°, 20° and 30° at a low Reynolds number corresponding to Rec=100,000. Findings Results indicate that the effect of tubercles diminishes with an increase in wing sweep. A significant performance enhancement was observed in the stall and post-stall regions. The addition of tubercles led to a smooth post-stall lift characteristic compared to the sudden loss in the lift with regular wings. Among the four different wings under observation, it was found that tubercles were most effective on the 0° configuration (no sweep), showing a 10.8% increment in maximum lift and a 38.5% increase in the average lift generated in the post-stall region. Tubercles were least effective on 30° configuration. Furthermore, with an increase in wing sweep, co-rotating vortices were distinctly observed rather than counter-rotating vortices. Originality/value While extensive numerical and experimental studies have been performed on straight wings with tubercles, studies on the tubercle effect on swept wings at low Reynolds number are minimal and mainly experimental in nature. This study uses numerical methods to explore the complex flow physics associated with tubercles and their implementation on swept wings. This study can be used as an introductory study to implement passive flow control devices in the low Reynolds number regime.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3