Numerical investigation of heat transfer effects on combustion in a generic gas turbine burner

Author:

Hepkaya Ender,Yucel Nuri

Abstract

Purpose This study aims to methodologically investigate heat transfer effects on reacting flow inside a liquid-fueled, swirl-stabilized burner. Furthermore, particular attention is paid to turbulence modeling and the results of Reynolds-averaged Navier–Stokes and large eddy simulation approaches are compared in terms of velocity field and flame temperature. Design/methodology/approach Simulations consist liquid fuel distribution using Eulerian–Lagrangian approach. Flamelet-Generated Manifold combustion model, which is a mixture fraction-progress variable formulation, is used to obtain reacting flow field. Discrete ordinates method is also added for modeling radiation heat transfer effect inside the burner. As a parametric study, different thermal boundary conditions namely: adiabatic wall, constant temperature and heat transfer coefficient are applied. Because of the fact that the burner is designed for operating with different materials, the effects of burner material on heat transfer and combustion processes are investigated. Additionally, material temperatures have been calculated using 1 D method. Finally, soot particles, which are source of luminous radiation in gas turbine combustors, are calculated using Moss-Brookes model. Findings The results show that the flow behavior is obviously different in recirculation region for both turbulence modeling approach, and this difference causes change on flame temperature distribution, particularly in the outer recirculation zone and region close to swirler. In thermal assessment of the burner, it is predicted that material of the burner walls and the applied thermal boundary conditions have significant influence on flame temperature, wall temperature and flow field. The radiation heat transfer also makes a strong impact on combustion inside the burner; however, luminous radiation arising from soot particles is negligible for the current case. Originality/value These types of burners are widely used in research of gas turbine combustion, and it can be seen that the heat transfer effects are generally neglected or oversimplified in the literature. This parametric study provides a basic understanding and methodology of the heat transfer effects on combustion to the researchers.

Publisher

Emerald

Subject

Aerospace Engineering

Reference20 articles.

1. Barlow, R.S. and Frank, J.H. (2003), “Sandia/TUD piloted CH4/air jet flames”, available at: https://tnfworkshop.org/data-archives/pilotedjet/ch4-air/ (accessed 20 November 2019).

2. Prediction of soot and thermal radiation in confined turbulent jet diffusion flames;Combustion and Flame,1999

3. Index of resolution quality for large eddy simulations;Journal of Fluids Engineering,2005

4. Large eddy simulations for radiation-spray coupling for a lean direct injector combustor;Combustion and Flame,2014

5. Radiation-spray coupling for realistic flow configurations,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3