Disturbances rejection based on sliding mode control

Author:

Taimoor Muhammad,Aijun Li,Amin Rooh ul

Abstract

Purpose The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based sliding mode control (SMC) technique is used for approximation the disturbances as well as to stabilize the system effectively in presence of uncertainties. Design/methodology/approach This research work investigates the disturbances rejection algorithm for fixed-wing unmanned aerial vehicle. An algorithm based on SMC is introduced for disturbances rejection. Two types of disturbances are considered, the constant disturbance and the sinusoidal disturbance. The comprehensive lateral and longitudinal models of the system are presented. Two types of dynamics, the dynamics without disturbance and the new dynamics with disturbance, are presented. An observer-based algorithm is presented for the estimation of the dynamics with disturbances. Intensive simulations and experiments have been performed; the results not only guarantee the robustness and stability of the system but the effectiveness of the proposed algorithm as well. Findings In previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated. Practical implications As the stability is always important for flight, so the algorithm proposed in this research guarantees the robustness and rejection of disturbances, which plays a vital role in practical life for avoiding any kind of damage. Originality/value In the previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated. An observer-based SMC not only approximates the different disturbances and also these disturbances are rejected in order to guarantee the effectiveness and robustness.

Publisher

Emerald

Subject

Aerospace Engineering

Reference30 articles.

1. Multi-UAV platform for integration in mixed-initiative coordinated missions;IFAC Proceedings Volumes (IFAC-PapersOnline),2006

2. Nonlinear controller of quadcopters for agricultural monitoring;Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2015

3. Optimal control of a small fixed-wing UAV about concatenated trajectories;Control Engineering Practice,2015

4. Adaptive trajectory following for a fixed-wing UAV in presence of crosswind;Journal of Intelligent & Robotic Systems,2013

5. Robust flight control for a fixed-wing unmanned aerial vehicle using adaptive super-twisting approach;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3