Mechanical properties of near alpha titanium alloys for high-temperature applications - a review

Author:

Tabie Vitus Mwinteribo,Li Chong,Saifu Wang,Li Jianwei,Xu Xiaojing

Abstract

Purpose This paper aims to present a broad review of near-a titanium alloys for high-temperature applications. Design/methodology/approach Following a brief introduction of titanium (Ti) alloys, this paper considers the near-α group of Ti alloys, which are the most popular high-temperature Ti alloys developed for a high-temperature application, particularly in compressor disc and blades in aero-engines. The paper is relied on literature within the past decade to discuss phase stability and microstructural effect of alloying elements, plastic deformation and reinforcements used in the development of these alloys. Findings The near-a Ti alloys show high potential for high-temperature applications, and many researchers have explored the incorporation of TiC, TiB SiC, Y2O3, La2O3 and Al2O3 reinforcements for improved mechanical properties. Rolling, extrusion, forging and some severe plastic deformation (SPD) techniques, as well as heat treatment methods, have also been explored extensively. There is, however, a paucity of information on SiC, Y2O3 and carbon nanotube reinforcements and their combinations for improved mechanical properties. Information on some SPD techniques such as cyclic extrusion compression, multiaxial compression/forging and repeated corrugation and straightening for this class of alloys is also limited. Originality/value This paper provides a topical, technical insight into developments in near-a Ti alloys using literature from within the past decade. It also outlines the future developments of this class of Ti alloys.

Publisher

Emerald

Subject

Aerospace Engineering

Reference196 articles.

1. Polylactic acid (PLA) carbon nanotube nanocomposites,2015

2. The influence of elevated temperature on the mechanical behavior of α/β-Titanium alloys,1988

3. Powder metallurgy strategies to improve properties and processing of titanium alloys: a review;Advanced Engineering Materials,2017

4. Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α+β regime;Materials Science and Engineering: A,2014

5. Review of mechanical properties of Ti-6Al-4V made by Laser-Based additive manufacturing using powder feedstock;JOM Journal Jom,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3