An improved ellipsoid optimization algorithm in subspace predictive control

Author:

Jianhong Wang

Abstract

Purpose The purpose of this paper is to derive the output predictor for a stationary normal process with rational spectral density and linear stochastic discrete-time state-space model, respectively, as the output predictor is very important in model predictive control. The derivations are only dependent on matrix operations. Based on the output predictor, one quadratic programming problem is constructed to achieve the goal of subspace predictive control. Then an improved ellipsoid optimization algorithm is proposed to solve the optimal control input and the complexity analysis of this improved ellipsoid optimization algorithm is also given to complete the previous work. Finally, by the example of the helicopter, the efficiency of the proposed control strategy can be easily realized. Design/methodology/approach First, a stationary normal process with rational spectral density and one stochastic discrete-time state-space model is described. Second, the output predictors for these two forms are derived, respectively, and the derivation processes are dependent on the Diophantine equation and some basic matrix operations. Third, after inserting these two output predictors into the cost function of predictive control, the control input can be solved by using the improved ellipsoid optimization algorithm and the complexity analysis corresponding to this improved ellipsoid optimization algorithm is also provided. Findings Subspace predictive control can not only enable automatically tune the parameters in predictive control but also avoids many steps in classical linear Gaussian control. It means that subspace predictive control is independent of any prior knowledge of the controller. An improved ellipsoid optimization algorithm is used to solve the optimal control input and the complexity analysis of this algorithm is also given. Originality/value To the best knowledge of the authors, this is the first attempt at deriving the output predictors for stationary normal processes with rational spectral density and one stochastic discrete-time state-space model. Then, the derivation processes are dependent on the Diophantine equation and some basic matrix operations. The complexity analysis corresponding to this improved ellipsoid optimization algorithm is analyzed.

Publisher

Emerald

Subject

Aerospace Engineering

Reference14 articles.

1. Finite sample system identification: an overview and a new correlation method;IEEE Control Systems Letters,2018

2. A linear programming approach to online set membership parameter estimation for linear regression models;International Journal of Adaptive Control and Signal Processing,2017

3. The role of vector autoregressive modeling in predictor based subspace identification;Automatica,2007

4. On the relation between CCA and predictor based subspace identification;IEEE Transactions on Automatic Control,2008

5. Stochastic control approach to reputation games;IEEE Transactions on Automatic Control,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3