Abstract
PurposeKnowledge management (KM) significantly affects supply chain management (SCM) and its performance in today's highly competitive corporate climate. It is crucial to consider this relationship to achieve optimal supply chain performance (SCP). This study aims to assess this impact by defining and examining the multi-dimensional relationships between KM Process Elements (KMPEs) and SCP Evaluation Criteria (SCPEC) within a comprehensive theoretical framework.Design/methodology/approachIntegrating KMPEs and SCPEC becomes an uncertain decision-making problem due to data deficiency and the vagueness of decision-makers’ judgments. To address uncertainties, this study uses interval-valued neutrosophic (IVN) sets and proposes an IVN model consisting of SWARA, which is one of the effective multi-criteria decision-making (MCDM) approaches, and house of quality (HOQ) methods. IVN-SWARA is used to weight the SCPEC while IVN-HOQ establishes relationships and prioritizes the KMPEs and SCPEC.FindingsThe results show that reliability is the most significant SCP evaluation criterion. Among the KMPEs, capitalization, sharing, and transfer exhibit stronger associations with the SCPEC compared to the other elements. Capitalization as one of the KMPEs was found to be the most critical one, and efficiency is the criterion most affected by all elements of the KM process.Originality/valueThis study uses innovative methodologies to evaluate the adoption of KM processes on SCP under uncertain environments and involving multi-decision-makers. The proposed integrated model demonstrates flexibility and practicality in combining KM and SCM, leading to improved SCP. Notably, this study presents the development of IVN-SWARA and the use of the integrated IVN-SWARA - IVN-HOQ decision tool, which are novel contributions to the existing literature.
Subject
Management Science and Operations Research,General Business, Management and Accounting
Reference106 articles.
1. Three-way decisions based on neutrosophic sets and AHP-QFD framework for supplier selection problem;Future Generation Computer Systems,2018
2. Fuzzy quality function deployment: an analytical literature review;Journal of Industrial Engineering,2013
3. The leading edge in QFD: past, present and future;International Journal of Quality and Reliability Management,2003
4. User's guide to correlation coefficients;Turkish Journal of Emergency Medicine,2018
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献