A study of boosted evolutionary classifiers for detecting spam

Author:

Trivedi Shrawan Kumar,Dey Shubhamoy

Abstract

PurposeEmail is a rapid and cheapest medium of sharing information, whereas unsolicited email (spam) is constant trouble in the email communication. The rapid growth of the spam creates a necessity to build a reliable and robust spam classifier. This paper aims to presents a study of evolutionary classifiers (genetic algorithm [GA] and genetic programming [GP]) without/with the help of an ensemble of classifiers method. In this research, the classifiers ensemble has been developed with adaptive boosting technique.Design/methodology/approachText mining methods are applied for classifying spam emails and legitimate emails. Two data sets (Enron and SpamAssassin) are taken to test the concerned classifiers. Initially, pre-processing is performed to extract the features/words from email files. Informative feature subset is selected from greedy stepwise feature subset search method. With the help of informative features, a comparative study is performed initially within the evolutionary classifiers and then with other popular machine learning classifiers (Bayesian, naive Bayes and support vector machine).FindingsThis study reveals the fact that evolutionary algorithms are promising in classification and prediction applications where genetic programing with adaptive boosting is turned out not only an accurate classifier but also a sensitive classifier. Results show that initially GA performs better than GP but after an ensemble of classifiers (a large number of iterations), GP overshoots GA with significantly higher accuracy. Amongst all classifiers, boosted GP turns out to be not only good regarding classification accuracy but also low false positive (FP) rates, which is considered to be the important criteria in email spam classification. Also, greedy stepwise feature search is found to be an effective method for feature selection in this application domain.Research limitations/implicationsThe research implication of this research consists of the reduction in cost incurred because of spam/unsolicited bulk email. Email is a fundamental necessity to share information within a number of units of the organizations to be competitive with the business rivals. In addition, it is continually a hurdle for internet service providers to provide the best emailing services to their customers. Although, the organizations and the internet service providers are continuously adopting novel spam filtering approaches to reduce the number of unwanted emails, the desired effect could not be significantly seen because of the cost of installation, customizable ability and the threat of misclassification of important emails. This research deals with all the issues and challenges faced by internet service providers and organizations.Practical implicationsIn this research, the proposed models have not only provided excellent performance accuracy, sensitivity with low FP rate, customizable capability but also worked on reducing the cost of spam. The same models may be used for other applications of text mining also such as sentiment analysis, blog mining, news mining or other text mining research.Originality/valueA comparison between GP and GAs has been shown with/without ensemble in spam classification application domain.

Publisher

Emerald

Subject

Library and Information Sciences

Reference49 articles.

1. Genetic programming: first European workshop,1998

2. An empirical comparison of voting classification algorithms: bagging, boosting, and variants;Machine Learning,1999

3. Random forests;Machine Learning,2001

4. Parameter setting in parallel genetic algorithms,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3