Hybrid multibeam forming and multiuser detection technique for MU-MIMO system

Author:

Kumari D. Lalitha,Prasad M.N. Giri

Abstract

PurposeIn recent years, multiuser-multiple-input multiple-output (MU-MIMO)-based wireless communication system has emerged as a prominent 5G technique that has several advantages over conventional MIMO systems such as high data rate and channel capacity. In this paper, the authors introduce a novel low-complexity radix factorization-based fast Fourier transform (FFT) as a multibeamformer and maximal likelihood-MU detection (ML-MUD) techniques as an optimal signal subdetector which results with considerable complexity reduction with intolerable error rate performance.Design/methodology/approachThe proposed radix-factorized FFT-multibeamforming (RF-FFT-MBF) architectures have the potential to reduce both hardware complexity and energy consumptions as compared to its state-of-the-art methods while meeting the throughput requirements of emerging 5G devices. Here through simulation results, the efficiency of the scaled ML subdetector system is compared with the conventional ML detectors.FindingsHere through simulation results, the efficiency of the scaled ML subdetector system is compared with the conventional ML detectors. Through experimental results, it is well proved that the proposed detector offers significant hardware and energy efficiency with the least possible error rate performance overhead.Originality/valueHere through simulation results, the efficiency of the scaled ML subdetector system is compared with the conventional ML detectors. Through experimental results, it is well proved that the proposed detector offers significant hardware and energy efficiency with the least possible error rate performance overhead.

Publisher

Emerald

Subject

Computer Science Applications,History,Education

Reference12 articles.

1. Analog approximate-FFT 8/16-beam algorithms, architectures and CMOS circuits for 5G beamforming MIMO transceivers;IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2018

2. IEEE 802.11 AC: from channelization to multi-user MIMO;IEEE Communication Magazine,2013

3. Orthogonal binary modulation division for two-user uplink massive MIMO systems with noncoherent ML detection;IEEE Communication Letters,2016

4. A WLAN uplink collision-resolving scheme using multi-user beamforming technique;IEEE Transactions on Vehicular Technology,2020

5. MU-MIMO communications with MIMO radar: From co-existence to joint transmission;IEEE Transactions on Wireless Communications,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retraction notice: Hybrid multibeam forming and multiuser detection technique for MU-MIMO system;International Journal of Intelligent Unmanned Systems;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3