Author:
Zheng Hongjuan,Song Weiqiang
Abstract
PurposeHyperbranched poly(ester-amide)s (HPEAs) have been synthesized from diethanolamine and maleic anhydride with ethylene glycol as a core monomer by using a two-step method, which are marked as Hupea polymers, and dehydration was carried out in xylene under reflux.Design/methodology/approachIn comparison with Hupea polymers was synthesized by one-pot method, Hupea polymers synthesized by two-step method has different structure and rheological properties. The intermediate monomer and the resulting polymer are characterized by FTIR and NMR spectroscopies.FindingsAll of Mw, Mn and Mw/Mn of the hyperbranch polymers decrease with the core/monomer molar ratio increasing. The intrinsic viscosity ([η]) of the polymers decreases with Mw increasing in the investigated range of Mw and scales as [η]∼Mw-0.82, which implies that the molecular weight grew faster with core/monomer molar ratio decreasing than the volume in the investigated range of core/monomer molar ratio.Research limitations/implicationsThe hydrodynamic radius was calculated by using Einstein’s equation and scales as Rh ∼ Mw0.061, and the lower exponent reveals the slow growth in the volume of Hupea molecule. In addition, the viscosity of Hupea polymer in concentrated aqueous solution is independent of shear rate and slightly dependent on molecular weight.Practical implicationsHyperbranched poly(ester-amide)s (HPEAs) were synthesized by using a two-step method, which had different structure and rheological properties.Originality/valueHupea polymers show different features from Hupea polymers in structure and rheological properties, which revealed that the synthesis process of HPEA has effect on its performance.
Subject
Materials Chemistry,Surfaces, Coatings and Films
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献