Hyperbranched unsaturated polyester amide synthesized by two-step method

Author:

Zheng Hongjuan,Song Weiqiang

Abstract

PurposeHyperbranched poly(ester-amide)s (HPEAs) have been synthesized from diethanolamine and maleic anhydride with ethylene glycol as a core monomer by using a two-step method, which are marked as Hupea polymers, and dehydration was carried out in xylene under reflux.Design/methodology/approachIn comparison with Hupea polymers was synthesized by one-pot method, Hupea polymers synthesized by two-step method has different structure and rheological properties. The intermediate monomer and the resulting polymer are characterized by FTIR and NMR spectroscopies.FindingsAll of Mw, Mn and Mw/Mn of the hyperbranch polymers decrease with the core/monomer molar ratio increasing. The intrinsic viscosity ([η]) of the polymers decreases with Mw increasing in the investigated range of Mw and scales as [η]∼Mw-0.82, which implies that the molecular weight grew faster with core/monomer molar ratio decreasing than the volume in the investigated range of core/monomer molar ratio.Research limitations/implicationsThe hydrodynamic radius was calculated by using Einstein’s equation and scales as Rh ∼ Mw0.061, and the lower exponent reveals the slow growth in the volume of Hupea molecule. In addition, the viscosity of Hupea polymer in concentrated aqueous solution is independent of shear rate and slightly dependent on molecular weight.Practical implicationsHyperbranched poly(ester-amide)s (HPEAs) were synthesized by using a two-step method, which had different structure and rheological properties.Originality/valueHupea polymers show different features from Hupea polymers in structure and rheological properties, which revealed that the synthesis process of HPEA has effect on its performance.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3