Eco-friendly single bath dyeing of wool yarns with extracted cochineal dye: optimization and additives effect

Author:

Imani Hooman,Gharanjig Kamaladin,Ahmadi Zahra

Abstract

Purpose The purpose of this study is simultaneous dyeing and mordanting of wool yarns with extracted cochineal dye and aluminum sulfate to the reduction of consuming energy, water and time. Design/methodology/approach The dyeing process was optimized using the response surface methodology (RSM) approach. pH, dyeing duration and the presence of additives were chosen as variables and the color strength of samples as a response. The color characteristics and fastness attributes of samples dyed in the best condition were evaluated and compared to pre-mordant dyeing outcomes on wool yarns. Findings The best conditions for deep dyeing wool with cochineal dye were as follows: pH 2.5, time 110 min and the ratio of aluminum: additives 1:0 at 100 °C. Color strength of dyed wool yarns by one-bath and pre-mordant dyeing methods were approximately the same. Wool yarns can dye to the on-bath dyeing method such that the dyed samples have similar color strength and fastness properties to pre-mordant dyeing. Social implications Wool dyeing processes that use one-bath dyeing consume less water and produce fewer effluents. As a result, this strategy conserves water and energy for a higher quality of life. The findings of this study, in general, aid environmental protection. Originality/value A novel one-bath process for dyeing wool with cochineal dye at heavy depths is introduced. RSM was used to optimize the procedure and determine effective parameters on the color strength of dyed wools. Using extracted cochineal dye and aluminum sulfate in a simultaneous dyeing technique, good color fastness qualities on wool fibers were achieved.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3