Nylon dyeing with reactive dyes by intermittent exposure to microwave irradiations to improve leveling

Author:

Irfan Mohammad,Gao Aiqin,Hou Aiqin

Abstract

Purpose Reactive dyes are believed to have great potential for nylon dyeing, but these anionic dyes tend to rush toward the nylon at the beginning of the process, resulting in uneven dyeing. Achieving uniformity gets even harder when the dyeing is performed under exposure to eco-friendly technique microwave irradiations. This study aims to achieve rapid and homogenous results by intermittent shaking and non-continuous exposure to microwave. Design/methodology/approach A set of reactive red dyes, based on the same chromophore and different substituents in the auxochrome part, was applied to the nylon fabric without any leveling agent. A series of experiments were designed to investigate the effect of different dye structures, exhaustion pH, liquor ratio, exhaustion time and fixation time to obtain an optimum recipe under the microwave dyeing technique. Findings Dyeing performance was characterized based on the color strength, exhaustion and fixation percentages and color fastness values. The characterization showed that better results can be achieved at a liquor ratio of 1:15 at exhaustion pH 2.7 which is also the isoelectric point of nylon, with 5.5 to 7 min of exhaustion and 6 to 8 min of fixation time for different dyes. Microwave dyed samples secured higher color strength values and provided better exhaustion and fixation than the conventional dye samples. Furthermore, the X-ray diffraction results verified that there was no considerable difference in the morphological structure of nylon with microwave exposure. Originality/value An applied technique is disclosed in this work to achieve uniform dyeing on nylon 66 with reactive dyes without any leveling agent under exposure to eco-friendly rapid heating microwave irradiations.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3