Design optimisation of reinforced concrete pile foundation using generalised reduced gradient algorithm

Author:

Dauda Jamiu AdetayoORCID,Rahmon Suraj A.,Tijani Ibrahim A.ORCID,Mohammad Fouad,Okegbenro Wakeel O.

Abstract

PurposeThe purpose of this study is to find the optimum design of Reinforced Concrete (RC) pile foundation to enable efficient use of structural concrete with greater consequences for global environment and economy.Design/methodology/approachA non-linear optimisation technique based on the Generalised Reduced Gradient (GRG) algorithm was implemented to find the minimum cost of RC pile foundation in frictional soil. This was achieved by obtaining the optimum pile satisfying the serviceability and ultimate limit state requirements of BS 8004 and EC 7. The formulated structural optimisation procedure was applied to a case study project to assess the efficiency of the proposed design formulation.FindingsThe results prove that the GRG method in Excel solver is an active, fast, accurate and efficient computer programme to obtain optimum pile design. The application of the optimisation for the case study project shows up to 26% cost reduction compared to the conventional design.Research limitations/implicationsThe design and formulation of design constraints will be limited to provisions of BS 8004 and EC 7.Practical implicationsSince the minimum quantity of concrete was attained through optimisation, then minimum cement will be used and thus result in minimum CO2 emission. Therefore, the optimum design of concrete structures is a vital solution to limit the damage to the Earth's climate and the physical environment resulting from high carbon emissions.Originality/valueThe current study considers the incorporation of different soil ground parameters in the optimisation process rather than assuming any pile capacity value for the optimisation process.

Publisher

Emerald

Reference32 articles.

1. Optimisation of constrained nonlinear programming engineering problems: evaluation of alternative approaches,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3