Double-diffusive free convective flow of Casson fluid due to a moving vertical plate with non-linear thermal radiation

Author:

Nandeppanavar Mahantesh M.,M.C. Kemparaju,Raveendra N.

Abstract

Purpose This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and convective boundary conditions. Design/methodology/approach The main partial differential equations of the flow, heat and concentration profiles were rehabilitated to nonlinear ordinary differential equations by using an appropriate similarity transformation. The resultant nonlinear ordinary differential equations (ODEs) are solved numerically applying fourth-order Runge–Kutta shooting technique and functions of ODE45 from MATLAB. Findings The effect of convective heat transfer, buoyancy ratio parameter, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number over velocity, temperature and concentration profiles, equivalent to abundant somatic parameters were graphically scrutinized. Originality/value All the results are very promising and further there is got good agreement of results when compared with earlier published results at limiting conditions.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference37 articles.

1. Unsteady free-convection intraction with thermal radiation in a boundary layer flow past a vertical porous plate;J. Math. Phys. Sci,1996

2. Mixed convection heat transfer of MHD flow due to permeable sheet: an analytical solution;Advances in Physics Theories and Applications,2016

3. Analysis of casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field;Journal of Applied Mathematics and Physics,2015

4. Magnetohydrodynamic flow of a casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction;Ain Shams Engineering Journal,2016

5. Double diffusive radiative magnetic mixed convective slip flow with biot and richardson number effects;Journal of Engineering Thermophysics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3