Prediction of load requirement and instabilities during end forming of friction stir processed AA 6063-T6 thin-walled tubes

Author:

Agrawal Arvind K.ORCID,Narayanan R. GaneshORCID

Abstract

PurposeThe current work aims to propose a finite element (FE) simulation methodology to predict the formability of friction stir processed (FSPed) tubes by end forming. Moreover, a strain mapping method is also presented to predict the end forming instabilities.Design/methodology/approachIn this work, FE simulation of end forming of raw tubes and FSPed AA6063-T6 tubes are done using Abaqus (explicit) incorporating anisotropic properties of the raw tube and FSPed zone. Actual thickness of the FSPed zone is also implemented. Expansion, reduction and beading are the end forming operations considered. Load requirement and instabilities are predicted. A new method “strain mapping method” is followed to predict the failure instabilities in expansion and beading, while during reduction, wrinkling is predicted by FE simulations. Lab scale experiments on FSP and end forming are done for validation at various rotational speeds.FindingsResults reveal that in the case of expansion and reduction of FSPed tubes, forming load predictions are accurate, while in beading, after initiation of bead, predictions are not accurate. Experimental observation on the type of instability is consistently predicted during numerical simulations. Prediction of displacement at failure by strain mapping method is encouraging in most of the cases including those that are FSPed. Hence, it is suggested that the method can be utilized to evaluate the onset of failure during tube expansion and beading.Originality/valueFE simulation methodology including anisotropic properties of raw tube and FSPed tubes is proposed, which is not attempted until now even for normal tubes. Strain mapping method is easy to implement for instability predictions, which is done usually by failure theories and forming limit diagram.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modelling and Simulation

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3