The dynamics of cryptocurrency market behavior: sentiment analysis using Markov chains

Author:

Kim KwansooORCID,Lee Sang-Yong TomORCID,Assar SaïdORCID

Abstract

PurposeThe authors examine cryptocurrency market behavior using a hidden Markov model (HMM). Under the assumption that the cryptocurrency market has unobserved heterogeneity, an HMM allows us to study (1) the extent to which cryptocurrency markets shift due to interactions with social sentiment during a bull or bear market and (2) the heterogeneous pattern of cryptocurrency market behavior under these two market conditions.Design/methodology/approachThe authors advance the HMM model based on two six-month datasets (from November 2017 to April 2018 for a bull market and from December 2018 to May 2019 for a bear market) collected from Google, Twitter, the stock market and cryptocurrency trading platforms in South Korea. Social sentiment data were collected by crawling Bitcoin-related posts on Twitter.FindingsThe authors highlight the reaction of the cryptocurrency market to social sentiment under a bull and a bear market and in two hidden states (an upward and a downward trend). They find: (1) social sentiment is relatively relevant during a bull compared to a bear market. (2) The cryptocurrency market in a downward state, that is, with a local decreasing trend, tends to be more responsive to positive social sentiment. (3) The market in an upward state, that is, with a local increasing trend, tends to better interact with negative social sentiment.Originality/valueThe proposed HMM model contributes to a theoretically grounded understanding of how cryptocurrency markets respond to social sentiment in bull and bear markets through varied sequences adjusted for cryptocurrency market heterogeneity.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Financial Sentiment Analysis: Techniques and Applications;ACM Computing Surveys;2024-04-24

2. KRİPTO PARA PİYASASINDA İŞLEM YAPAN BİREYSEL YATIRIMCILARIN İRRASYONEL YATIRIMCI DAVRANIŞLARININ ANALİZİ;Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi;2024-03-25

3. Sentiment analysis to support business decision-making. A bibliometric study;AIMS Mathematics;2024

4. Exploring the relationship between digital trails of social signals and bitcoin returns;Studies in Economics and Finance;2023-06-09

5. The Influence of AI-Identified Consumer Sentiment Metrics on Crypto-Asset Prices;2023 9th International Conference on Information Technology Trends (ITT);2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3