Laser micro-machined 28 GHz broad band single feed microstrip antenna for 5G mm-wave applications

Author:

Jose Melvin C.,Sankararajan Radha,B.S. Sreeja,Pratap Kumar Pratap Kumar

Abstract

Purpose This paper aims to propose a laser micro-machined 4 × 4 elements microstrip array antenna suitable for 5 G millimeter wave (mm-wave) applications. Each patch element of the array is excited with same amplitude and phase that is achieved with proper novel impedance matching stub. The proposed antenna achieves a simulated gain of 13.15 dBi and a measured return loss of −24.80 dB at 28.73 GHz with a total bandwidth of 7.48 GHz. The designed antenna is directional with a directivity of 15.1 dBi at 28.73 GHz, whereas fabricated on a low cost FR4 substrate with a substrate thickness of 0.074 λ mm. The antenna is realized with an aperture size of 2.24λ × 3.26λ. Design/methodology/approach The antenna structure starts from the design of single element called unit cell. The single element is designed using the transmission line model equations of a rectangular patch. To design a 28 GHz microstrip patch antenna, a dielectric material with lower permittivity and having thickness (h) less than 1 mm is required. This specification gives better gain and efficiency by reducing surface waves and mutual coupling between elements. The inset width is optimized to achieve the minimum reflection coefficient (S11). The single element has been arranged with a minimum spacing of λ/2 (5.3571 mm) in an H plane and E plane. It is connected using the microstrip lines with proper impedance matching. The four 2 × 2-sub array cell subsystems are connected with a corporate feed together formed the 4 × 4-array cell. Rectangular planar array method is used to arrange the elements in the 4 × 4 array cell. Findings The design concept is simple which includes the combination of corporate feed and insect feed. It is compact in size and easy to fabricate. The bandwidth of fabricated prototype antenna array is achieved as 7.48 GHz from 24.98 GHz to 32.46 GHz. The mutual coupling is very less though the antenna array is placed with minimum spacing between adjacent elements. This is because of the microstrip feeding structure with minimum phase shift. The gain can be further enhanced with increasing number of array element and proper designing of feed line. Owing to the advantages of low profile, wide bandwidth and high gain, the designed array will be potentially useful in 5 G wireless communications. Originality/value The measured antenna offers bandwidth 7.48 GHz (24.98 GHz-32.46 GHz) with centered frequency 28.73 GHz. The agreement between simulated and measured results is good. The VSWR is observed 0.32 < 2, offers good impedance matching and low mutual coupling. It gives better E-Field and H-field radiation patterns of the 4 × 4 array antenna structure at 28 GHz. The total gain of 13.14 dBi is achieved at the center frequency. The total efficiency of 63.42 per cent is achieved with FR4 substrate.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference18 articles.

1. Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems,2016

2. A filtering Dual-Polarized antenna subarray targeting for base stations in Millimeter-Wave 5G wireless communications;IEEE Transactions on Components, Packaging and Manufacturing Technology,2017

3. Broadband Proximity-Coupled microstrip planar antenna array for 5G cellular applications;IEEE Antennas and Wireless Propagation Letters,2018

4. Stacked microstrip linear array for Millimeter-Wave 5G baseband communication;IEEE Antennas and Wireless Propagation Letters,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3