Finance-based scheduling using meta-heuristics: discrete versus continuous optimization problems

Author:

Elazouni Ashraf,Alghazi Anas,Selim Shokri Z.

Abstract

Purpose – The purpose of this paper is to compare the performance of the genetic algorithm (GA), simulate annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving discrete versus continuous-variable optimization problems of the finance-based scheduling. This involves the minimization of the project duration and consequently the time-related cost components of construction contractors including overheads, finance costs and delay penalties. Design/methodology/approach – The meta-heuristics of the GA, SA and SFLA have been implemented to solve non-deterministic polynomial-time hard (NP-hard) finance-based scheduling problem employing the objective of minimizing the project duration. The traditional problem of generating unfeasible solutions in scheduling problems is adequately tackled in the implementations of the meta-heuristics in this paper. Findings – The obtained results indicated that the SA outperformed the SFLA and GA in terms of the quality of solutions as well as the computational cost based on the small-size networks of 30 activities, whereas it exhibited the least total duration based on the large-size networks of 120 and 210 activities after prolonged processing time. Research limitations/implications – From researchers’ perspective, finance-based scheduling is one of the few domain problems which can be formulated as discrete and continuous-variable optimization problems and, thus, can be used by researchers as a test bed to give more insight into the performance of new developments of meta-heuristics in solving discrete and continuous-variable optimization problems. Practical implications – Finance-based scheduling discrete-variable optimization problem is of high relevance to the practitioners, as it allows schedulers to devise finance-feasible schedules of minimum duration. The minimization of project duration is focal for the minimization of time-related cost components of construction contractors including overheads, finance costs and delay penalties. Moreover, planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction through the expedient delivery of the completed project for clients to start reaping the anticipated benefits. Social implications – Planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction. Originality/value – SFLA represents a relatively recent meta-heuristic that proved to be promising, based on its limited number of applications in the literature. This paper is to implement SFLA to solve the discrete-variable optimization problem of the finance-based scheduling and assess its performance by comparing its results against those of the GA and SA.

Publisher

Emerald

Subject

Economics and Econometrics,Finance,Accounting,Business and International Management

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3