Geometrical feature analysis of Co-Cr-Mo single tracks after selective laser melting processing

Author:

Monroy Karla,Delgado Jordi,Sereno Lidia,Ciurana Joaquim,Hendrichs Nicolas J

Abstract

Purpose – Therefore, the purpose of this study is to understand the relationships between the processing parameters and the geometric form of the produced single tracks, in order to control dimensional quality in future experimentations. The quality of the deposited single track and layer is of prime importance in the selective laser melting (SLM) process, as it affects the product quality in terms of dimensional precision and product performance. Design/methodology/approach – In this paper, a vertical milling machining center equipped with an Ytterbium-fiber laser was used in the SLM experimentation to form single cobalt-chromium-molybdenum (CoCrMo) tracks. The different geometric features and the influence of the scanning parameters on these morphologic characteristics were studied statistically by means of ANOVA. Findings – Evidently, track height (h1) inaccuracy reduced in layer thicknesses between 100 and 200 μm. The re-melt depth (h2) was determined by the energy parameters, with laser power of 325-350 W and scanning speed (SS) of 66.6-83.3 mm/s being the most favorable parameters to obtain the required anchoring. Moreover, a contact angle of 117° was proposed as optimal, as it permitted an adequate overlapping region and a full densification, and, finally, an SS of 50 mm/s and a layer thickness of 250 were suggested for its development. Originality/value – The comprehension of the phenomena inherent to the process is related to the single track geometrical characteristics, which allow the definition of an optimal value for each factor for a further proposal of processing conditions that can finally derive a higher precision, wetting, density and mechanical properties.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3