Production of Ti-6Al-4V acetabular shell using selective laser melting: possible limitations in fabrication

Author:

Khorasani AmirMahyar,Gibson Ian,Goldberg Moshe,Littlefair Guy

Abstract

Purpose The purpose of this paper is to improve the manufacturing of a prosthetic acetabular shell by analyzing the main factors leading to failure during the selective laser melting (SLM) additive manufacturing (AM) process. Design/methodology/approach Different computer-aided design and computer-aided manufacturing processes have been applied to fabricate acetabular parts. Then, various investigations into surface quality, mechanical properties and microstructure have been carried out to scrutinize the possible limitations in fabrication. Findings Geometrical measurements showed 1.59 and 0.27 per cent differences between the designed and manufactured prototypes for inside and outside diameter, respectively. However, resulting studies showed that unstable surfaces, cracks, an interruption in powder delivery and low surface quality were the main problems that occurred during this process. These results indicate that SLM is an accurate and promising method for production of intricate shapes, provided that the appropriate settings of production conditions are considered to minimize possible limitations. Originality/value The contributions of this paper are discussions covering different issues in the AM fabrication of acetabular shells to improve the mechanical properties, quality and durability of the produced parts.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference29 articles.

1. Adhesion upon solidification and detachment in the melt spinning of metals;Metallurgical and Materials Transactions B,2014

2. Microstructure and mechanical behaviour of Ti – 6Al–7Nb alloy produced by selective laser melting;Materials Characterization,2011

3. Rapid prototyping: from product development to medicine and beyond;Virtual and Physical Prototyping,2006

4. Micro prototyping and fabrication in manufacturing,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3