Blind image deblurring for a close scene under a 6-DOF motion path

Author:

Wang Zhe,Li Xisheng,Zhang Xiaojuan,Bai Yanru,Zheng Chengcai

Abstract

Purpose How to model blind image deblurring that arises when a camera undergoes ego-motion while observing a static and close scene. In particular, this paper aims to detail how the blurry image can be restored under a sequence of the linear model of the point spread function (PSF) that are derived from the 6-degree of freedom (DOF) camera’s accurate path during the long exposure time. Design/methodology/approach There are two existing techniques, namely, an estimation of the PSF and a blind image deconvolution. Based on online and short-period inertial measurement unit (IMU) self-calibration, this motion path has discretized a sequence of the uniform speed of 3-DOF rectilinear motion, which unites with a 3-DOF rotational motion to form a discrete 6-DOF camera’s path. These PSFs are evaluated through the discrete path, then combine with a blurry image to restoration through deconvolution. Findings This paper describes to build a hardware attachment, which is composed of a consumer camera, an inexpensive IMU and a 3-DOF motion mechanism to the best of the knowledge, together with experimental results demonstrating its overall effectiveness. Originality/value First, the paper proposes that a high-precision 6-DOF motion platform periodically adjusts the speed of a three-axis rotational motion and a three-axis rectilinear motion in a short time to compensate the bias of the gyroscope and the accelerometer. Second, this paper establishes a model of 6-DOF motion and emphasizes on rotational motion, translational motion and scene depth motion. Third, this paper addresses a novel model of the discrete path that the motion during long exposure time is discretized at a uniform speed, then to estimate a sequence of PSFs.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference37 articles.

1. Study of subjective quality and objective blind quality prediction of stereoscopic videos;IEEE Transactions on Image Processing,2019

2. DehazeNet: an end-to-end system for single image haze removal;IEEE Transactions on Image Processing,2016

3. Modelling customer satisfaction for product development using genetic programming;Journal of Engineering Design,2011

4. Neural-Network-Based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg–marquardt algorithm;IEEE Transactions on Intelligent Transportation Systems,2011

5. Image deblurring using a hybrid optimization algorithm,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3