Simulation evaluation of small samples based on grey estimation and improved bootstrap

Author:

Yang Wenguang,Lin Lianhai,Gao Hongkui

Abstract

PurposeTo solve the problem of simulation evaluation with small samples, a fresh approach of grey estimation is presented based on classical statistical theory and grey system theory. The purpose of this paper is to make full use of the difference of data distribution and avoid the marginal data being ignored.Design/methodology/approachBased upon the grey distribution characteristics of small sample data, the definition about a new concept of grey relational similarity measure comes into being. At the same time, the concept of sample weight is proposed according to the grey relational similarity measure. Based on the new definition of grey weight, the grey point estimation and grey confidence interval are studied. Then the improved Bootstrap resampling is designed by uniform distribution and randomness as an important supplement of the grey estimation. In addition, the accuracy of grey bilateral and unilateral confidence intervals is introduced by using the new grey relational similarity measure approach.FindingsThe new small sample evaluation method can realize the effective expansion and enrichment of data and avoid the excessive concentration of data. This method is an organic fusion of grey estimation and improved Bootstrap method. Several examples are used to demonstrate the feasibility and validity of the proposed methods to illustrate the credibility of some simulation data, which has no need to know the probability distribution of small samples.Originality/valueThis research has completed the combination of grey estimation and improved Bootstrap, which makes more reasonable use of the value of different data than the unimproved method.

Publisher

Emerald

Reference30 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3