Author:
Yang Wenguang,Lin Lianhai,Gao Hongkui
Abstract
PurposeTo solve the problem of simulation evaluation with small samples, a fresh approach of grey estimation is presented based on classical statistical theory and grey system theory. The purpose of this paper is to make full use of the difference of data distribution and avoid the marginal data being ignored.Design/methodology/approachBased upon the grey distribution characteristics of small sample data, the definition about a new concept of grey relational similarity measure comes into being. At the same time, the concept of sample weight is proposed according to the grey relational similarity measure. Based on the new definition of grey weight, the grey point estimation and grey confidence interval are studied. Then the improved Bootstrap resampling is designed by uniform distribution and randomness as an important supplement of the grey estimation. In addition, the accuracy of grey bilateral and unilateral confidence intervals is introduced by using the new grey relational similarity measure approach.FindingsThe new small sample evaluation method can realize the effective expansion and enrichment of data and avoid the excessive concentration of data. This method is an organic fusion of grey estimation and improved Bootstrap method. Several examples are used to demonstrate the feasibility and validity of the proposed methods to illustrate the credibility of some simulation data, which has no need to know the probability distribution of small samples.Originality/valueThis research has completed the combination of grey estimation and improved Bootstrap, which makes more reasonable use of the value of different data than the unimproved method.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献