Modelling the relationships between the barriers to implementing machine learning for accident analysis: the Indian petroleum industry

Author:

Gangadhari Rajan KumarORCID,Khanzode Vivek,Murthy Shankar,Dennehy DenisORCID

Abstract

PurposeThis paper aims to identify, prioritise and explore the relationships between the various barriers that are hindering the machine learning (ML) adaptation for analysing accident data information in the Indian petroleum industry.Design/methodology/approachThe preferred reporting items for systematic reviews and meta-analysis (PRISMA) is initially used to identify key barriers as reported in extant literature. The decision-making trial and evaluation laboratory (DEMATEL) technique is then used to discover the interrelationships between the barriers, which are then prioritised, based on three criteria (time, cost and relative importance) using complex proportional assessment (COPRAS) and multi-objective optimisation method by ratio analysis (MOORA). The Delphi method is used to obtain and analyse data from 10 petroleum experts who work at various petroleum facilities in India.FindingsThe findings provide practical insights for management and accident data analysts to use ML techniques when analysing large amounts of data. The analysis of barriers will help organisations focus resources on the most significant obstacles to overcome barriers to adopt ML as the primary tool for accident data analysis, which can save time, money and enable the exploration of valuable insights from the data.Originality/valueThis is the first study to use a hybrid three-phase methodology and consult with domain experts in the petroleum industry to rank and analyse the relationship between these barriers.

Publisher

Emerald

Subject

Business and International Management,Strategy and Management

Reference119 articles.

1. Designing an optimal safe layout for a fuel storage tanks farm: case study of Jaipur oil depot;International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering,2014

2. A taxonomy of cyber-harms: defining the impacts of cyber-attacks and understanding how they propagate;Journal of Cybersecurity,2018

3. Errors in accident data, its types, causes and methods of rectification-analysis of the literature;Accident Analysis and Prevention,2019

4. Considerations for the adoption of cloud-based big data analytics in small business enterprises;Electronic Journal of Information Systems Evaluation,2018

5. A systematic review of machine learning in Logistics and Supply Chain Management: current trends and future directions;Benchmarking: An International Journal,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3