Abstract
PurposePatent trade recommendations necessitate recommendation interpretability in addition to recommendation accuracy because of patent transaction risks and the technological complexity of patents. This study designs an interpretable knowledge-aware patent recommendation model (IKPRM) for patent trading. IKPRM first creates a patent knowledge graph (PKG) for patent trade recommendations and then leverages paths in the PKG to achieve recommendation interpretability.Design/methodology/approachFirst, we construct a PKG to integrate online company behaviors and patent information using natural language processing techniques. Second, a bidirectional long short-term memory network (BiLSTM) is utilized with an attention mechanism to establish the connecting paths of a company — patent pair in PKG. Finally, the prediction score of a company — patent pair is calculated by assigning different weights to their connecting paths. The semantic relationships in connecting paths help explain why a candidate patent is recommended.FindingsExperiments on a real dataset from a patent trading platform verify that IKPRM significantly outperforms baseline methods in terms of hit ratio and normalized discounted cumulative gain (nDCG). The analysis of an online user study verified the interpretability of our recommendations.Originality/valueA meta-path-based recommendation can achieve certain explainability but suffers from low flexibility when reasoning on heterogeneous information. To bridge this gap, we propose the IKPRM to explain the full paths in the knowledge graph. IKPRM demonstrates good performance and transparency and is a solid foundation for integrating interpretable artificial intelligence into complex tasks such as intelligent recommendations.
Subject
Economics and Econometrics,Sociology and Political Science,Communication
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献