MHD convective process due to rotation of cylinders and movement of a wavy wall of two-sided wavy enclosures with radiation

Author:

Ahmed Sameh E.,Alhazmi Muflih

Abstract

Purpose This paper aims to study the mixed convective process due to various dynamics, namely, inner rotating cylinders and upper-wavy wall movement for the first time. Design/methodology/approach The Galerkin finite element method together with the characteristic-based split scheme is applied to solve the governing system. Findings The main outcomes revealed that the direction of the rotation of the cylinders, radius and locations of the rotating shapes are beneficial controlling elements for the enhancement of heat transfer. Also, for all the considered cases, values of the Bejan number indicate that the fluid friction irreversibility is dominance compared to the heat transfer irreversibility. Further, average values of the heat transfer entropy, fluid friction entropy and total entropy are minimized in the case of fixed cylinders regardless of the cylinder radius. Originality/value The authors are interested in the mixed convection case due to regular boundaries and hence this simulation purposes a first attempt to examine the mixed convective flow due to irregular wavy boundaries. This study considered various dynamics, namely, inner rotating cylinders and wavy-lid driven wall which makes it more attractive to the readers. Various cases based on radius of the cylinder and direction of the rotations together with several locations of the rotating shapes are taken into account which makes the current simulation is comprehensive. Various studies presented in this field are made by commercial software and these treatments need special conditions (having limitation) but the current solution methodology is based on a finite element method home-code. Various important impacts, are, also, examined, namely, inclined geometry, inclined magnetic field, thermal radiation and heat generation/absorption. The entropy of the current complex system is analyzed based on the second law of thermodynamics.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference37 articles.

1. Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall;International Communications in Heat and Mass Transfer,2014

2. Mixed convection in thermally anisotropic non-Darcy porous medium in double lid-driven cavity using Bejan’s heatlines;Alexandria Engineering Journal,2016

3. FEM-CBS algorithm for convective transport of nanofluids in inclined enclosures filled with anisotropic non-Darcy porous media using LTNEM;International Journal of Numerical Methods for Heat and Fluid Flow,2020

4. Caputo fractional convective flow in an inclined wavy vented cavity filled with a porous medium using Al2O3-Cu hybrid nanofluids;International Communications in Heat and Mass Transfer,2020

5. Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity;International Journal of Heat and Mass Transfer,2007

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3