Author:
Sharma Abhishek Kumar,Tiwari Shaligram
Abstract
Purpose
This paper aims to carry out numerical study on growth of a single bubble from a curved hydrophilic surface, in nucleate pool boiling (NPB). The boiling performance associated with NPB on a curved surface has been analyzed in contrast to a plane surface.
Design/methodology/approach
Commercial software ANSYS Fluent 2021 R1 has been used with its built-in feature of interface tracking based on volume of fluid method. For water as the working fluid, the effect of microlayer evaporation underneath the bubble base has been included with the help of user-defined function. The phase change behavior at the interface of vapor bubble has been modeled by using “saturated-interface-volume” phase change model.
Findings
An interesting outcome of the present study is that the bubble departure gets delayed with increase in curvature of the heating surface. Wall heat flux is found to be higher for a curved surface as compared to a plane surface. Effect of wettability on the time for bubble growth is relatively more for the curved surface as compared to that for a plane surface.
Originality/value
Effect of surface curvature has been investigated on bubble dynamics and also on temporal variation of heat flux. In addition, the impact of surface wettability along with the surface curvature has also been analyzed on bubble morphology and spatial variation of heat flux. Furthermore, the influence of wall superheat on the bubble growth and also the wall heat flux has been studied for fixed angle of contact and varying curvature.