Exploring destination image through online reviews: an augmented mining model using latent Dirichlet allocation combined with probabilistic hesitant fuzzy algorithm

Author:

Luo YuyanORCID,Tong TaoORCID,Zhang XiaoxuORCID,Yang ZhengORCID,Li LingORCID

Abstract

PurposeIn the era of information overload, the density of tourism information and the increasingly sophisticated information needs of consumers have created information confusion for tourists and scenic-area managers. The study aims to help scenic-area managers determine the strengths and weaknesses in the development process of scenic areas and to solve the practical problem of tourists' difficulty in quickly and accurately obtaining the destination image of a scenic area and finding a scenic area that meets their needs.Design/methodology/approachThe study uses a variety of machine learning methods, namely, the latent Dirichlet allocation (LDA) theme extraction model, term frequency-inverse document frequency (TF-IDF) weighting method and sentiment analysis. This work also incorporates probabilistic hesitant fuzzy algorithm (PHFA) in multi-attribute decision-making to form an enhanced tourism destination image mining and analysis model based on visitor expression information. The model is intended to help managers and visitors identify the strengths and weaknesses in the development of scenic areas. Jiuzhaigou is used as an example for empirical analysis.FindingsIn the study, a complete model for the mining analysis of tourism destination image was constructed, and 24,222 online reviews on Jiuzhaigou, China were analyzed in text. The results revealed a total of 10 attributes and 100 attribute elements. From the identified attributes, three negative attributes were identified, namely, crowdedness, tourism cost and accommodation environment. The study provides suggestions for tourists to select attractions and offers recommendations and improvement measures for Jiuzhaigou in terms of crowd control and post-disaster reconstruction.Originality/valuePrevious research in this area has used small sample data for qualitative analysis. Thus, the current study fills this gap in the literature by proposing a machine learning method that incorporates PHFA through the combination of the ideas of management and multi-attribute decision theory. In addition, the study considers visitors' emotions and thematic preferences from the perspective of their expressed information, based on which the tourism destination image is analyzed. Optimization strategies are provided to help managers of scenic spots in their decision-making.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3