PCB failure analysis related to the ENIG black pad problem

Author:

Ramanauskas Rimantas,Selskis Algirdas,Juodkazyte Jurga,Jasulaitiene Vitalija

Abstract

PurposeThe purpose of this paper is to verify the principal conclusions, done during the implementation of FP7 ASPIS project objectives in fundamental research of ENIG‐related failures by investigating real problematic PCB samples of different suppliers.Design/methodology/approachSEM, EDS and XPS techniques were applied for morphology and composition studies of ENIG coatings of three PCB samples (A, B and C), while electrochemical measurements were used to determine the porosity of EN and IG layers.FindingsThe surface morphology analysis of the un‐soldered pads of PCB A disclosed the fact that the surface of substrate was not pre‐treated in a proper manner before EN deposition, which generated structural defects such as cracks and opening pores in the EN layer, which in turn could produce the voids in the solder layer during the soldering process. The results of PCB B analysis confirmed the authors' observation that Au layers deposited on EN substrate from IG solution contaminated with Cu ions are highly porous and loosely adhering to EN coating, which, in addition, undergoes serious corrosion damages and may be the principal reason for the black pad defect occurrence. High porosity of IG deposit and the presence of the intermediate layer between Au and Ni‐P, which was enriched in Cu and O, were the main reasons for the black pad issue in the case of PCB C.Originality/valueThe gained knowledge on the mechanism of ENIG‐related failures, which cause reliability problems in PCB manufacture, makes it possible to elaborate potential non‐destructive techniques for detecting ENIG problems.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3