An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer

Author:

Tiwary Vivek Kumar,P. Arunkumar,Malik Vinayak R.

Abstract

Purpose Three-dimensional (3D) printing, one of the important technological pillars of Industry 4.0, is changing the landscape of future manufacturing. However, the limited build volume of a commercially available 3D printer is one inherent constraint, which holds its acceptability by the manufacturing business leaders. This paper aims to address the issue by presenting a novel classification of the possible ways by which 3D-printed parts can be joined or welded to achieve a bigger-sized component. Design/methodology/approach A two-step literature review is performed. The first section deals with the past and present research studies related to adhesive bonding, mechanical interlocking, fastening and big area additive manufacturing of 3D printed thermoplastics. In the second section, the literature searches were focused on retrieving details related to the welding of 3D printed parts, specifically related to friction stir welding, friction (spin) welding, microwave and ultrasonic welding. Findings The key findings of this review study comprise the present up-to-date research developments, pros, cons, critical challenges and the future research directions related to each of the joining/welding techniques. After reading this study, a better understanding of how and which joining/welding technique to be applied to obtain a bigger volume 3D printed component will be acquired. Practical implications The study provides a realistic approach for the joining of 3D printed parts made by the fused deposition modeling (FDM) technique. Originality/value This is the first literature review related to joining or welding of FDM-3D printed parts helping the 3D printing fraternity and researchers, thus increasing the acceptability of low-cost FDM printers by the manufacturing business leaders.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference93 articles.

1. Ahmed, R. (2017), “New research could help increase speed of FFF/FDM printers”, available at: https://3dprinting.com/news/new-research-could-help-increase-speed-fdm-fff-printers/ (accessed 8 August 2020).

2. Anisotropic material properties of fused deposition modeling ABS;Rapid Prototyping Journal,2002

3. Alexei, S. (2019), “3D printed fasteners//screws for 3D printed parts”, available at: https://studiofathom.com/blog/using-fasteners-with-3d-printed-parts (accessed 14 August 2020).

4. Critical parameters influencing the quality of prototypes in fused deposition modelling;Journal of Materials Processing Technology,2001

5. Multi-criteria selection of structural adhesives to bond ABS parts obtained by rapid prototyping;International Journal of Adhesion and Adhesives,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3