Observation of impact energy absorption performance on idealised trabecular forms in laser sintered nylon

Author:

McCardle John Richard,Bunyan Joe

Abstract

Purpose This paper aims to investigate whether the trabecular architecture found in natural bone can be effectively replicated through the selective laser sintering process of Nylon P2200. Design/methodology/approach Trabecular bone was idealised into a scaled up hexagonal cell proven to replicate the natural structure. The structure was modelled in Solidworks 2013 to form a network of interlinking cells. The specific property analysed was the structure toughness through the measurement of the energy absorbed before sample fracture. Findings It was found that the impact absorption can be increased with the integration of a greater number of trabecular cells producing a finer resolution and not necessarily by increasing the trabecular size. The information gained from this research may be useful in the design of impact and shock absorbing components, with an emphasis on efficient use of material mass. Research limitations/implications Designers and engineers may find biomimetic methods of absorbing shock and impact an efficient alternative consideration in design applications. Practical implications The trabecular architecture should be designed so as to be weaker than the bounding surfaces, ensuring that the individual trabecular experience failure first, maximising their energy absorbing capability through increasing the period of deceleration. The simplest way of doing this is to ensure the rod thickness is less than the bounding material thickness. Originality/value This work documents original testing of both the RP material and consolidated design of samples of idealised bone structures. It builds on previous work in the area and through the results of empirical testing, derives recommendations for further considerations in this area of design and manufacture of biomimetic structures.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference15 articles.

1. Bone structure models using stereolithography: a technical note;Rapid Prototyping Journal,2002

2. Additive manufactured textiles for high-performance stab resistant applications;Rapid Prototyping Journal,2013

3. Micro-modelling and analysis of actual and idealised cancellous structure;Biomed,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3