Tissue transformation mold design and stereolithography fabrication

Author:

Zheng Yihao,Wang Yancheng,Chen Roland K.,Deshpande Sagar,Nelson Noah S.,Buchman Steven R.,Shih Albert J.

Abstract

Purpose To obtain a vascularized autologous bone graft by in-vivo tissue transformation, a biocompatible tissue transformation mold (TTM) is needed. An ideal TTM is of high geometric accuracy and X-ray radiolucent for monitoring the bone tissue formation. The purpose of this study is to present the TTM design and fabrication process, using 3D reconstruction, stereolithography (SLA) and silicone molding. Design/methodology/approach The rat mandible, the targeted bone graft, was scanned by micro-computed tomography (CT). From the micro-CT images, the 3D mandible model was identified and used as the cavity geometry to design the TTM. The TTM was fabricated by molding the biocompatible and radiolucent silicone in the SLA molds. This TTM was implanted in a rat for in vivo tests on its biocompatibility and X-ray radiolucency. Findings SLA can fabricate the TTM with a cavity shape that accurately replicates that of the rat mandible. The bone formation inside of the silicone TTM can be observed by X-ray. The TTM is feasible for in vivo tissue transformation for vascularized bone reconstruction. Research limitations/implications Research of the dimensional and geometrical accuracy of the TTM cavity is required in the future study of this process. Practical implications The TTM fabricated in this presented approach has been used for in-vivo tissue transformation. This technique can be implemented for bone reconstruction. Originality/value The precision fabrication of the TTMs for in-vivo tissue transformation into autogenous vascularized bone grafts with complex structures was achieved by using SLA, micro-CT and silicone molding.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference27 articles.

1. Prefabricated vascularized bone flap: a tissue transformation technique for bone reconstruction;Plastic and Reconstructive Surgery,2001

2. Prefabrication of vascularized bone flap induced by recombinant human bone morphogenetic protein 2 (rhBMP-2);International Journal of Oral and Maxillofacial Surgery,2003

3. A perspective on 4D bioprinting;International Journal of Bioprinting,2016

4. Conservatism and adaptability during squirrel radiation: what is mandible shape telling us;PLoS ONE,2013

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3