Novel environmentally friendly tannin-cyclohexanone formaldehyde resin for high performance applications

Author:

Kızılcan Nilgun,Sert Selda

Abstract

Purpose Cyclohexanone-formaldehyde resin (CFR) was in situ modified with tannin (T) in the presence of sodium hydroxide. The purpose of this study is to produce eco-friendly tannin-modified cyclohexanone resins (TCFR) with a one-step method that has higher decomposition temperature than CFR. The solubility, molecular weight and thermal properties of the product were investigated. Design/methodology/approach Cyclohexanone, formalin (37 per cent aqueous solution) and tannin were mixed and 20 per cent aqueous NaOH solution was added to produce the resin. Tannin has environmentally friendly bio-based phenolic compounds that the tannin structure has been incorporated into the structure of the cyclohexanone formaldehyde resin during the in situ modification of resin, such as resole resin. Findings The improvement of the properties of the TCFRs produced from condensed tannin. TCFRs were soluble in common organic solvents. The product TCFR has a dark red colour. Research limitations/implications The reaction mixture must be stirred continuously. Subsequently, 37 per cent formalin was added drop-wise in total while refluxing. The amount of aqueous NaOH solution of it is limited, as the formed resin may become insoluble in common organic solvents. At the end of the reaction, a water-soluble resin is obtained. Then, the water of water phase was removed from TCFR reaction system, successively by evaporating with rotary evaporator. Practical implications This study provides the application of ketonic resins. The TCFR containing tannin groups may also promote the adhesive strength of a coating. Social implications These resins may be used for the preparation of adhesive. Condensed tannin, with a large amount of Catechol groups was considered for reducing the formaldehyde emission level on the adhesive system. Originality/value TCFR has been synthesised in the presence of a base catalyst. Environmental and ecological concerns have increased the attention paid by chemical industry to renewable raw materials.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference21 articles.

1. Aniline and oligoaniline modified cyclohexanone formaldehyde resins;Pigment & Resin Technology,2011

2. The chemical, kinetic and mechanical characterization of tannin-based adhesives with different crosslinking systems;International Journal of Adhesion & Adhesives,2016

3. Influence of interfacial adhesion on the mechanical properties and fracture behavior of short sisal fiber rein forced polymer composites;European Polymer Journal,1996

4. Modification of acetophenone-formaldehyde and cyclohexanone – formaldehyde resins;Journal of Applied Polymer Science,1996

5. In situ modified cyclohexanone formaldehyde resin;Die Angewandte Makromolekulare Chemie,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3