Abstract
PurposeThe purpose of this paper is to develop an effective approach to support and guide production improvement processes utilising online product reviews.Design/methodology/approachThis paper combines two methods: (1) natural language processing (NLP) to support advanced text mining to increase the accuracy of information extracted from product reviews and (2) quality function deployment (QFD) to utilise the extracted information to guide the product improvement process.FindingsThe paper proposes an approach to automate the process of obtaining voice of the customer (VOC) by performing text mining on available online product reviews while considering key factors such as the time of review and review usefulness. The paper enhances quality management processes in organisations and advances the literature on customer-oriented product improvement processes.Originality/valueOnline product reviews are a valuable source of information for companies to capture the true VOC. VOC is then commonly used by companies as the main input for QFD to enhance quality management and product improvement. However, this process requires considerable time, during which VOC may change, which may negatively impact the output of QFD. This paper addresses this challenge by providing an improved approach.
Subject
Information Systems,Management of Technology and Innovation,General Decision Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献