An unsupervised one-class-classifier support vector machine to simultaneously monitor location and scale of multivariate quality characteristics

Author:

Maji ArijitORCID,Mukherjee IndrajitORCID

Abstract

PurposeThe purpose of this study is to propose an effective unsupervised one-class-classifier (OCC) support vector machine (SVM)-based single multivariate control chart (OCC-SVM) to simultaneously monitor “location” and “scale” shifts of a manufacturing process.Design/methodology/approachThe step-by-step approach to developing, implementing and fine-tuning the intrinsic parameters of the OCC-SVM chart is demonstrated based on simulation and two real-life case examples.FindingsA comparative study, considering varied known and unknown response distributions, indicates that the OCC-SVM is highly effective in detecting process shifts of samples with individual observations. OCC-SVM chart also shows promising results for samples with a rational subgroup of observations. In addition, the results also indicate that the performance of OCC-SVM is unaffected by the small reference sample size.Research limitations/implicationsThe sample responses are considered identically distributed with no significant multivariate autocorrelation between sample observations.Practical implicationsThe proposed easy-to-implement chart shows satisfactory performance to detect an out-of-control signal with known or unknown response distributions.Originality/valueVarious multivariate (e.g. parametric or nonparametric) control chart(s) are recommended to monitor the mean (e.g. location) and variance (e.g. scale) of multiple correlated responses in a manufacturing process. However, real-life implementation of a parametric control chart may be complex due to its restrictive response distribution assumptions. There is no evidence of work in the open literature that demonstrates the suitability of an unsupervised OCC-SVM chart to simultaneously monitor “location” and “scale” shifts of multivariate responses. Thus, a new efficient OCC-SVM single chart approach is proposed to address this gap to monitor a multivariate manufacturing process with unknown response distributions.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference50 articles.

1. A review of machine learning kernel methods in statistical process monitoring;Computers and Industrial Engineering,2020

2. Multivariate statistical process control charts: an overview;Quality and Reliability Engineering International,2007

3. Two simple Shewhart-type multivariate nonparametric control charts;Applied Stochastic Models in Business and Industry,2012

4. Phase I distribution-free analysis of multivariate data;Technometrics,2017

5. Nonparametric (distribution-free) control charts: an updated overview and some results;Quality Engineering,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3