A Krylov enhanced proper orthogonal decomposition method for frequency domain model reduction

Author:

Binion David,Chen Xiaolin

Abstract

Purpose This paper aims to describe a method for efficient frequency domain model order reduction. The method attempts to combine the desirable attributes of Krylov reduction and proper orthogonal decomposition (POD) and is entitled Krylov enhanced POD (KPOD). Design/methodology/approach The KPOD method couples Krylov’s moment-matching property with POD’s data generalization ability to construct reduced models capable of maintaining accuracy over wide frequency ranges. The method is based on generating a sequence of state- and frequency-dependent Krylov subspaces and then applying POD to extract a single basis that generalizes the sequence of Krylov bases. Findings The frequency response of a pre-stressed microelectromechanical system resonator is used as an example to demonstrate KPOD’s ability in frequency domain model reduction, with KPOD exhibiting a 44 per cent efficiency improvement over POD. Originality/value The results indicate that KPOD greatly outperforms POD in accuracy and efficiency, making the proposed method a potential asset in the design of frequency-selective applications.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference43 articles.

1. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems;Applied Numerical Mathematics,2002

2. Dynamic electro thermal simulation of microsystems a review;Journal of Micromechanics and Microengineering,2005

3. CMS methods for efficient damping prediction for structures with friction,2008

4. Component mode iteration for frequency calculations;AIAA Journal,1987

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3