DEIM-embedded hybrid snapshot simulation for reduced order model generation

Author:

Bai FengORCID,Wang YiORCID

Abstract

PurposeThe purpose of this paper is to establish an intelligent framework to generate the data representatives in snapshot simulation in order to construct the online reduced-order model based on the generated data information. It could greatly reduce the computational time in snapshot simulation and accelerate the computational efficiency in the real-time computation of reduced-order modeling.Design/methodology/approachThe snapshot simulation, which generates the data to construct reduced-order models (ROMs), usually is computationally demanding. In order to accelerate the snapshot generation, this paper presents a discrete element interpolaiton method (DEIM)-embedded hybrid simulation approach, in which the entire snapshot simulation is partitioned into multiple intervals of equal length. One of the three models: the full order model (FOM), local ROM, or local ROM-DEIM which represents a hierarchy of model approximations, fidelities and computational costs, will be adopted in each interval.FindingsThe outcome of the proposed snapshot simulation is an efficient ROM-DEIM applicable to various online simulations. Compared with the traditional FOM and the hybrid method without DEIM, the proposed method is able to accelerate the snapshot simulation by 54.4%–63.91% and 10.5%–27.85%, respectively. In the online simulation, ROM-DEIM only takes 4.81%–8.56% of the computational time of FOM, while preserving excellent accuracy (with relative error <1%).Originality/value1. A DEIM-embedded hybrid snapshot simulation methodology is proposed to accelerate snapshot data generation and reduced-order model (ROM)-DEIM development. 2. The simulation alternates among FOM, ROM and ROM-DEIM to adaptively generate snapshot data of salient subspace representation while minimizing computational load. 3. The DEIM-embedded hybrid snapshot approach demonstrates excellent accuracy (<1% error) and computational efficiency in both online snapshot simulation and online ROM-DEIM verification simulation.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3