Study on the particle stratification and penetration of a swing vibrating screen by using DEM

Author:

Ning Shuigen,Xiao Jianzhang,Wang Guifeng,Huang Pengcheng

Abstract

Purpose As for vibrating screen, the separation of granular materials is a very complicated process, particularly the screening with a swing trace. To study the characteristics of stratification and penetration in the swing vibrating screen, a three-dimensional numerical model was developed to simulate the screening process. Design/methodology/approach The discrete element method (DEM) was used to perform the numerical simulation, and the kinetic model of the swing screening was established. The regions of stratification and penetration were defined, and the mathematical functions relating fine particle ratio of stratification and penetration to time were presented using the least squares method. Findings The results show that the low value of frequency (5 and 10 Hz) has a limited effect on the stratification, while the obvious effect can be found at high frequency. A low frequencies or small swing angles may enhance the particle penetration. By studying the vibration parameters affecting the stratification and penetration rate, it is found that the frequency has more influence than the swing angle. Originality/value The higher screening efficiency and processing capacity can be further obtained for the swing vibrating screen by comparing with the linear vibrating screen. These results reveal the fundamental characteristics of particle motion in the swing screening, which will provide reliable guidance for studying the design optimization of vibrating screen.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3