Fatigue crack growth prediction of 7075 aluminum alloy based on the GMSVR model optimized by the artificial bee colony algorithm

Author:

Yang Dalian,Liu Yilun,Li Songbai,Tao Jie,Liu Chi,Yi Jiuhuo

Abstract

Purpose The aim of this paper is to solve the problem of low accuracy of traditional fatigue crack growth (FCG) prediction methods. Design/methodology/approach The GMSVR model was proposed by combining the grey modeling (GM) and the support vector regression (SVR). Meanwhile, the GMSVR model parameter optimal selection method based on the artificial bee colony (ABC) algorithm was presented. The FCG prediction of 7075 aluminum alloy under different conditions were taken as the study objects, and the performance of the genetic algorithm, the particle swarm optimization algorithm, the n-fold cross validation and the ABC algorithm were compared and analyzed. Findings The results show that the speed of the ABC algorithm is the fastest and the accuracy of the ABC algorithm is the highest too. The prediction performances of the GM (1, 1) model, the SVR model and the GMSVR model were compared, the results show that the GMSVR model has the best prediction ability, it can improve the FCG prediction accuracy of 7075 aluminum alloy greatly. Originality/value A new prediction model is proposed for FCG combined the non-equidistant grey model and the SVR model. Aiming at the problem of the model parameters are difficult to select, the GMSVR model parameter optimization method based on the ABC algorithm was presented. the results show that the GMSVR model has better prediction ability, which increase the FCG prediction accuracy of 7075 aluminum alloy greatly.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference38 articles.

1. Support vector regression based determination of shear wave velocity;Journal of Petroleum Science and Engineering,2015

2. The necessary and sufficient condition for GM(1,1) grey prediction model;Applied Mathematics and Computation,2013

3. A new method to predict fatigue crack growth rate of materials based on average cyclic plasticity strain damage accumulation;Chinese Journal of Aeronautics,2013

4. Gearbox fault diagnosis based on bacterial foraging algorithm optimization decisions;Journal of Central South University (Science and Technology),2015

5. Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm;Bulletin of Engineering Geology and the Environment,2016

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3