Artificial intelligence schemes to predict the mechanical performance of lignocellulosic fibers with unseen data to enhance the reliability of biocomposites

Author:

Al-Jarrah Rami,AL-Oqla Faris M.ORCID

Abstract

PurposeThis work introduces an integrated artificial intelligence schemes to enhance accurately predicting the mechanical properties of cellulosic fibers towards boosting their reliability for more sustainable industries.Design/methodology/approachFuzzy clustering and stacked method approach were utilized to predict the mechanical performance of the fibers. A reference dataset contains comprehensive information regarding mechanical behavior of the lignocellulosic fibers was compiled from previous experimental investigations on mechanical properties for eight different fiber materials. Data encompass three key factors: Density of 0.9–1.6 g/cm3, Diameter of 5.9–1,000 µm, and Microfibrillar angle of 2–49 deg were utilized. Initially, fuzzy clustering technique was utilized for the data. For validating proposed model, ultimate tensile strength and elongation at break were predicted and then examined against unseen new data that had not been used during model development.FindingsThe output results demonstrated remarkably accurate and highly acceptable predictions results. The error analysis for the proposed method was discussed by using statistical criteria. The stacked model proved to be effective in significantly reducing level of uncertainty in predicting the mechanical properties, thereby enhancing model’s reliability and precision. The study demonstrates the robustness and efficacy of the stacked method in accurately estimating mechanical properties of lignocellulosic fibers, making it a valuable tool for material scientists and engineers in various applications.Originality/valueCellulosic fibers are essential for biomaterials to enhance developing green sustainable bio-products. However, such fibers have diverse characteristics according to their types, chemical composition and structure causing inconsistent mechanical performance. This work introduces an integrated artificial intelligence schemes to enhance accurately predicting the mechanical properties of cellulosic fibers towards boosting their reliability for more sustainable industries. Fuzzy clustering and stacked method approach were utilized to predict the mechanical performance of the fibers.

Publisher

Emerald

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3