Finite element computation of the effective thermal conductivity of two-dimensional multi-scale heterogeneous media

Author:

Mattos Lucas Prado,Cruz Manuel Ernani,Bravo-Castillero Julián

Abstract

Purpose The simulation of heat conduction inside a heterogeneous material with multiple spatial scales would require extremely fine and ill-conditioned meshes and, therefore, the success of such a numerical implementation would be very unlikely. This is the main reason why this paper aims to calculate an effective thermal conductivity for a multi-scale heterogeneous medium. Design/methodology/approach The methodology integrates the theory of reiterated homogenization with the finite element method, leading to a renewed calculation algorithm. Findings The effective thermal conductivity gain of the considered three-scale array relative to the two-scale array has been evaluated for several different values of the global volume fraction. For gains strictly above unity, the results indicate that there is an optimal local volume fraction for a maximum heat conduction gain. Research limitations/implications The present approach is formally applicable within the asymptotic limits required by the theory of reiterated homogenization. Practical implications It is expected that the present analytical-numerical methodology will be a useful tool to aid interpretation of the gain in effective thermal conductivity experimentally observed with some classes of heterogeneous multi-scale media. Originality/value The novel aspect of this paper is the application of the integrated algorithm to calculate numerical bulk effective thermal conductivity values for multi-scale heterogeneous media.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference23 articles.

1. Multiscale convergence and reiterated homogenisation;Proceedings of the Royal Society of Edinburgh Section A: Mathematics,1996

2. Reiterated homogenization of a laminate with imperfect contact: gain-enhancement of effective properties;Applied Mathematics and Mechanics (English Edition,2018

3. Review on thermal properties of nanofluids: recent developments;Advances in Colloid and Interface Science,2015

4. Effective macroscopic description for heat conduction in periodic composites;International Journal of Heat and Mass Transfer,1983

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3